Anthony W. Czarnik

Adjunct Visiting Professor

Organic Chemistry

B.S. (1977), University of Wisconsin at Madison; M.S. (1980), Ph.D. (1981), University of Illinois at Urbana/Champaign (N. Leonard); NIH Postdoctoral Fellow (1981–1983) Columbia University (R. Breslow); Sloan Fellow (1989); Camille and Henry Dreyfus Teacher-Scholar (1990).

E-mail: ACzarnik [at] unr.edu
Phone: 775-853-1111
FAX: 775-853-1124
Office: CB 213

Anthony W. Czarnik

You are here: Home » Faculty » Anthony W. Czarnik

Research Interests

Current research interests include combinatorial chemistry as a tool for drug discovery, nucleic acids as targets for small molecule intervention, and fluorescent chemosensors of ion and molecule recognition. Dr. Czarnik is the founding editor of the Journal of Combinatorial Chemistry.

Curriculum Vitae

To view, please download the Curriculum Vitae, available in PDF format.

Talks

For a list of presentations and semiars given at meetings or institutions, please see the Full List of Talks.

Publications

Genomics

U.S. Patent 7,226,734 (June 5, 2007); "Multiplex decoding of array sensors with microspheres;" Inventors: M.S. Chee, J.R. Stuelpnagel, A.W. Czarnik.

U.S. Patent 7,060,431 (June 13, 2006); “Method of making and decoding of array sensors with microspheres;” Inventors: M.S. Chee, J.R. Stuelpnagel, A.W. Czarnik.

U.S. Patent 7,033,754 (April 25, 2006); “Decoding of array sensors with microspheres;” Inventors: M.S. Chee, A.W. Czarnik, J.R. Stuelpnagel.

U.S. Patent 6,942,968 (September 13, 2005); “Array compositions for improved signal detection;” Inventors: T.A. Dickinson, S. Meade, S.M. Barnard, A.W. Czarnik, J. Bierle, B.G. Kermani, M.S. Chee.

“Illuminating the SNP genomic code,” Czarnik, A.W. Modern Drug Discovery 1998, 1, 49-55.

Nucleic Acids as Receptors for Small Molecule Intervention

“Inhibitors of protein-RNA complexation that target the RNA: Specific recognition of HIV-1 TAR RNA by small organic molecules,” Mei, H.-Y.; Cui, M.; Heldsinger, A.; Lemrow, S.M.; Loo, J.A.; Sannes-Lowery, K.A.; Sharmeen, L.; Czarnik, A.W. Biochemistry 1998, 37, 14204-14212.

“Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism,” Wang, S.; Huber, P.W.; Cui, M.; Czarnik, A.W.; Mei, H.-Y. Biochemistry 1998, 37, 5549-5557.

“Discovery of selective, small-molecule inhibitors of RNA complexes -- I. The Tat protein/TAR RNA complexes required for HIV-I transcription,” Mei, H.-Y.; Mack, D.P.; Galan, A.A.; Halim, N.S.; Heldsinger, A.; Loo, J.A.; Moreland, D.W.; Sannes-Lowery, K.A.; Sharmeen, L.; Truong, H.N.; Czarnik, A.W. Bioorg. Med. Chem. 1997, 5, 1173.

“Discovery of selective, small-molecule inhibitors of RNA complexes -- II. Self-splicing group I Intron ribozyme,” Mei, H.-Y.; Cui, M.; Lemrow, S.M.; Czarnik, A.W. Bioorg. Med. Chem. 1997, 5, 1185.

“Inhibition of self-splicing group I Intron RNA: High-throughput screening assays,” Mei, H.-Y.; Cui, M.; Sutton, S. T.; Truong, H. N.; Chung, F-Z.; Czarnik, A. W. Nucleic Acids Res. 1996, 24, 5051.

“Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by aminoglycoside antibiotics,” Mei, H.-Y.; Sanders, K. B.; Galan, A. A.; Mack, D. P.; Halim, N. S.; Moreland, D. W.; Czarnik, A. W. Bioorg. Med. Chem. Lett. 1995, 5, 2755.

Combinatorial Chemistry

Xiao, X.-Y.; Li, R.; Hurst, D.; Zhuang, H.; Shi, S.; Czarnik, A.W.; Robichaud, A.J.; Wacker, D.A.; Robertson, D.W. J. Comb. Chem. 2002, 4, 536-539.

U.S. Patent 6,306,975 (October 23, 2001); “Radiation-grafted solid supports for chemical synthesis;” Inventors: C. Zhao, J.E. Lillig, R. Neeper, G.W. Hudson; W. Gordon, A.W. Czarnik, Z. Parandoosh, G.S. David, X.-Y. Xiao.

“Solid-phase synthesis of ureas on microtubes,” Zhuang, H.; Yang, E.-C.; Xiao, X.-Y.; Czarnik, A.W.; Frye, L.L.; Zindell, R. Solid-Phase Org. Synth. 2001, 1, 15-40.

“Kinetic study of organic reactions on polystyrene grafted microtubes,” Li, W.; Czarnik, A.W.; Lillig, J.; Xiao, X.-Y. J. Comb. Chem. 2000, 2, 224-227.

“Tubes and cubes, chips and tips: Tools for solid-phase organic synthesis,” Czarnik, A.W. Methods Princ. Med. Chem. 2000, 7, 81-95.

“A cyclitively cleavable linker for alcohols: Linker preparation and cleavage conditions,” Xiao, X.; Nova, M.P.; Czarnik, A.W. J. Comb. Chem. 1999, 1, 379-382.

“Kinetic comparison of amide formation on various crosslinked polystyrene resins,” Li, W.; Xiao, X.; Czarnik, A.W. J. Comb. Chem. 1999, 1, 127-129.

“Polystyrene grafted fluoropolymer microTubes: New supports for solid-phase organic synthesis with useful performance at high temperature,” Zhao, C.; Shi, S.; Mir, D.; Hurst, D.; Li, R.; Xiao, X.; Lillig, J.; Czarnik, A.W. J. Comb. Chem. 1999, 1, 91-95.

“Merrifield microtube reactors for solid phase synthesis,” Li, R.; Xiao, X.; Czarnik, A.W. Tetrahedron Lett. 1998, 39, 8581-8584.

“Combinatorial chemistry: What’s in it for analytical chemists?” Czarnik, A.W. Analyt. Chem. 1998, 70, 378A-386A.

“A combinatorial synthesis of tyrphostins via the ‘directed sorting’ method,” Shi, S.; Xiao, X.; Czarnik, A.W. Biotechnol. Bioeng. (Comb. Chem.) 1998, 61, 7-12.

“Solid-phase synthesis supports are like solvents,” Czarnik, A.W. Biotechnol. Bioeng. (Comb. Chem.) 1998, 61, 77-79.

“Combinatorial chemistry,” Czarnik, A.W.; Keene, J.D. Curr. Biol. 1998, 8, R705-R707.

“Combinatorial chemistry,” Czarnik, A.W.; Winograd, N. Entry in McGraw-Hill Yearbook of Science & Technology, 1998, p. 66.

“Encoding strategies in combinatorial chemistry,” Czarnik, A.W. Proc. Natl. Acad. Sci. 1997, 94, 12738.

“No static at all: Electronic encoding in combinatorial organic synthesis,” Czarnik, A.W.; Nova, M.P. Chem. Brit. 1997, 33, 39 .

“New combinatorial methods - encoding,” Czarnik, A.W. Curr. Op. Chem. Biol. 1997, 1, 60.

“Parallel organic synthesis using Parke-Davis’ DIVERSOMERS™ method,” DeWitt, S.H.; Czarnik, A.W. In Combinatorial Chemistry: Synthesis and Application, Wilson, S., Czarnik, A.W., Eds.; Wiley: NY, 1997; p. 25.

“The impact of polystyrene resins in solid-phase organic synthesis,” MacDonald, A.A.; Dewitt, S.H.; Ghosh, S.; Hogan, E.M.; Kieras, L.; Czarnik, A.W.; Ramage, R. Mol. Diversity 1996, 1, 183.

“Combinatorial organic synthesis using Parke-Davis’ DIVERSOMERS™ method,” DeWitt, S.H.; Czarnik, A.W. Acc. Chem. Res. 1996, 29, 114.

“Oligonucleotide libraries as a source of molecular diversity,” Mei, H.-Y.; Czarnik, A.W. In Combinatorial Chemistry and Molecular Diversity in Drug Discovery, Gordon, E.M., Kerwin, Jr., J.F., Eds.; Wiley: New York, NY, 1997.

“Small molecule combinatorial libraries via Parke-Davis’ DIVERSOMERS™ method,” Czarnik, A.W.; DeWitt, S.H. Chem. Brit. 1996, 32, 43.

“Automated synthesis and combinatorial chemistry,” DeWitt, S.H.; Czarnik, A.W. Curr. Opinion Biotechnol. 1995, 6, 640.

“Why combinatorial chemistry, why now (and why you should care),” Czarnik, A.W. ChemTracts-Organic Chemistry 1995, 8, 13.

“DIVERSOMER™ technology: Solid phase synthesis, automation, and integration for the generation of chemical diversity,” Hobbs DeWitt, S.; Schroeder, M.C.; Stankovic, C.J.; Strode, J.E.; Czarnik, A.W. Drug Development Research 1994, 33, 116.

“Parke-Davis’ DIVERSOMER™ technology. A practical approach to simultaneous, parallel organic synthesis,” Czarnik, A.W.; DeWitt, S.H.; Schroeder, M.C.; Stankovic, C.J.; Strode, J.E. Polym. Prepr. 1994, 35(2), 985.

Fluorescent Chemosensors of Ion and Molecule Recognition

“Chemosensors and chemical privacy,” Czarnik, A.W. AAAS Science and Technology Policy Yearbook 2002, 11, 311-317.

“Chemosensors: Synthetic receptors in analytical sensing applications,” Czarnik, A.W.; Yoon, J. Perspect. Supramol. Chem. 1999, 4, 177-191.

“A sense for landmines,” Czarnik, A.W. Nature 1998, 394, 417-418.

“A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water,” Dujols, V.; Ford, F.; Czarnik, A.W. J. Am. Chem. Soc. 1997, 119, 7386.

“A fluorescent chemosensor signalling only Hg(II) and Cu(II) in water,” Yoon, J.; Ohler, N.E.; Vance, D.H.; Aumiller, W.D.; Czarnik, A.W. Tetrahedron Lett. 1997, 38, 3845.

“A fluorescent chemosensor with selectivity for Hg(II),” Yoon, J.; Ohler, N.E.; Vance, D.H.; Aumiller, W.D.; Czarnik, A.W. In Chemosensors of Ion and Molecule Recognition, Desvergne, J.-P., Czarnik, A.W., Eds.; Kluwer: 1997; p 189.

“Chelation-enhanced fluorescence chemosensing of Pb(II), an inherently quenching metal ion,” Chae, M.-Y.; Yoon, J.; Czarnik, A.W. J. Mol. Recog. 1996, 6, 297.

“Desperately seeking sensors,” Czarnik, A.W. Chemistry & Biology 1995, 2, 423.

“Fluorescent chemosensors for cations, anions, and neutral analytes,” Czarnik, A.W. In Topics in Fluorescence Spectroscopy, Vol. 4: Probe Design and Chemical Sensing, Lakowicz, J., Ed.; Plenum: NY, 1994; pp. 49-70.

“Fluorescent chemosensors of ion and molecule recognition. Recent applications to pyrophosphate and to dopamine sensing,” Czarnik, A.W. In Interfacial Design and Chemical Sensing, Mallouk, T.E., Harrison, D.J., Eds.; ACS Books: 1994.

“Chemical communication in water using fluorescent chemosensors,” Czarnik, A.W. Accts. Chem. Res. 1994, 27, 302.

“Real-time assay of inorganic pyrophosphatase using a high affinity CHEF chemosensor,” Vance, D.H.; Czarnik, A.W. J. Amer. Chem. Soc. 1994, 116, 9397.

“Chemical communication of enzymatic ATP hydrolysis using a fluorescent chemosensor,” Van Arman, S.A.; Czarnik, A.W. Supramol. Chem. 1993, 1, 99.

“Fluorescent chemosensors for metal and non-metal ions in aqueous solution based on the ‘CHEF’ paradigm,” Czarnik, A.W. In Advances in Supramolecular Chemistry; JAI Press: Greenwich, 1993; Vol. 3, pp 131-157.

“Chemical communication using fluorescent chemosensors,” Czarnik, A.W. Trends in Organic Chemistry 1993, 4, 123.

“Supramolecular chemistry, fluorescence, and sensing,” Czarnik, A.W. In Fluorescent Chemosensors for Ion and Molecule Recognition, Czarnik, A.W., ed.; ACS Books: 1993.

“Fluorescent signal transduction in molecular sensors and dosimeters,”Czarnik, A.W. In Fluorescent Chemosensors for Ion and Molecule Recognition, Czarnik, A.W., ed.; ACS Books: 1993.

“A metal ion-insensitive polyanion chemosensor,” Hong, S.-Y.; Czarnik, A.W. J. Am. Chem. Soc. 1993, 115, 3330.

“New reagents for the syntheses of fluorescent chemosensors. Anthrylogous ethylene dibromides,” Chae, M.-Y.; Cherian, X.M.; Czarnik, A.W. J. Org. Chem. 1993, 58, 5797.

“Structural requirements for efficient photoinduced electron transfer (PET) in 9-aminoalkylanthracenes,” Beeson, J.C.; Huston, M.E.; Pollard, D.A.; Venkatachalam, T.K.; Czarnik, A.W. J. of Fluorescence 1993, 3, 65.

“Fluorescent chemosensing of catechol and catecholamines in water,” Yoon, J.-Y.; Czarnik, A.W. Bioorg. Med. Chem. 1993, 1, 267.

“Fluorimetric metal ion sensing using N-methyl-9-anthrylhydroxamic acid,” Chae, M.-Y.; Czarnik, A.W. J. of Fluorescence 1992, 2, 225.

“Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols based on chelation-enhanced quenching,” Yoon, J.-Y.; Czarnik, A.W. J. Am. Chem. Soc. 1992, 114, 5874.

“Fluorimetric chemodosimetry. Hg(II) and Ag(I) indication in water via enhanced fluorescence signalling,” Chae, M.-Y.; Czarnik, A.W. J. Am. Chem. Soc. 1992, 114, 9704.

“Chelation-enhanced fluorescence detection of metal and non-metal ions in aqueous solution,” Czarnik, A.W. Prog. Biomedical Optics 1992, 1648, 164.

“Chelation-enhanced fluorescence detection of metal and non-metal ions in aqueous solution,” Czarnik, A.W. In Frontiers in Supramolecular Organic Chemistry and Photochemistry; VCH: 1991, pp 109-122.

“Chelation enhanced fluorescence of anthrylazamacrocycles conjugate probes in aqueous solution,” Akkaya, E.U.; Huston, M.E.; Czarnik, A.W. J. Am. Chem. Soc. 1990, 112, 3590.

“A general fluorescence assay for enzyme catalyzed polyanion hydrolysis based on template directed excimer formation. Application to heparin and polyglutamate,” >Van Arman, S.A.; Czarnik, A.W. J. Am. Chem. Soc. 1990, 112, 5376.

“Chelatoselective fluorescence pertubation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation,” Huston, M.E.; Czarnik, A.W. J. Am. Chem. Soc. 1990, 112, 7054.

“Chelation enhanced fluorescence detection of non-metal ions,” Huston, M.E.; Akkaya, E.U.; Czarnik, A.W. J. Am. Chem. Soc. 1989, 111, 8735.

“Chelation-enhanced fluorescence in 9,10-bis(TMEDA)anthracene,” Huston, M.; Haider, K.; Czarnik, A.W. J. Am. Chem. Soc. 1988, 110, 4460.

Synthetic Catalysts for Acyl and Phosphoryl Transfer

“Preassociating α-nucleophiles based on β-cyclodextrin. Their synthesis and reactivity,” Martin, K.A.; Mortellaro, M.A.; Sweger, R.W.; Fikes, L.E.; Winn, D.T.; Clary, S.; Johnson, M.P.; Czarnik, A.W. J. Amer. Chem. Soc. 1995, 117, 10443.

“Metal ion catalyzed hydrolysis of acrylate esters and amides by way of their conjugate addition adducts,” Mortellaro, M.A.; Bleisch, T.J.; Duerr, B.F.; Kang, M.S.; Huang, H.; Czarnik, A.W. J. Org. Chem. 1995, 60, 7238.

“Synthesis and transacylating reactivity of β-cyclodextrinyl ethylenediamines,” Beeson, J.C.; Czarnik, A.W. Bioorg. Med. Chem. 1994, 2, 297.

“Synthesis of β-cyclodextrin oximes,” Mortellaro, M.A.; Hong, S.-Y.; Winn, D.T.; Czarnik, A.W. Bioorg. Med. Chem. Lett. 1994, 4, 2041.

“Cu(II)-catalysis of the reduction of N,O-dibenzoylhydroxylamine by a tertiary amine buffer,” Wathen, S.P.; Czarnik, A.W. Bioorg. Med. Chem. Lett. 1993, 3, 1245.

“Functional group convergency in a binuclear dephosphorylation reagent,” Vance, D.H.; Czarnik, A.W. J. Am. Chem. Soc. 1993, 115, 12165.

“Preassociating α-nucleophiles,” Fikes, L.E.; Winn, D.T.; Sweger, R.W.; Johnson, M.P.; Czarnik, A.W. J. Am. Chem. Soc. 1992, 114, 1493.

“Synthesis and transacylating activity of isomeric Co(III)-cyclodextrin artificial metalloenzymes,” Akkaya, E.U.; Czarnik, A.W. J. Phys. Org. Chem. 1992, 5, 540.

“Metal ion catalyzed redox deacylation of isomeric N- and O-acylhydroxylamines,” Wathen, S.P.; Czarnik, A.W. J. Org. Chem. 1992, 57, 6129.

“Cu(II)-promoted hydrolysis of N-benzoyliminodiacetic acid,” Chen, K.; Wathen, S.P.; Czarnik, A.W. Tetrahedron Lett. 1992, 33, 6303.

“Hydrogen bonding effects on the reactivity of a preassociating α-nucleophile. The secondary-side βCD hydroxylamine,” Mortellaro, M.A.; Czarnik, A.W. Bioorg. Med. Chem. Lett. 1992, 2, 1635.

“Rapid transacylations of activated ester substrates bound to the primary side β-cyclodextrin-cyclen conjugate and its M2+ complexes,” Rosenthal, M.I.; Czarnik, A.W. J. Incl. Phenomena. 1991, 10, 119.

“Synthesis and characterization of a reactive binuclear Co(III) complex. Cooperative promotion of phosphodiester hydrolysis,” Chung, Y.S.; Akkaya, E.A.; Venkatachalam, T.K.; Czarnik, A.W. Tetrahedron Lett. 1990, 31, 5413.

“Cu(II)-catalyzed hydrolysis of an unactivated amide. Application of the Groves’ Rule to the hydrolysis of acrylamide,” Duerr, B.F.; Czarnik, A.W. J. Chem. Soc., Chem. Comm. 1990, 1707.

“Cu(II) catalyzed hydrolysis of an unactivated ester based on reversible conjugate addition,” Duerr, B.F.; Czarnik, A.W. Tetrahedron Lett. 1989, 30, 6951.

“Synthesis and reactivity of cobalt(III) complexes bearing 1o- and 2o-side cyclodextrin binding sites. A tale of two CD’s,” Akkaya, E.; Czarnik, A.W. J. Am. Chem. Soc. 1988, 110, 8553.

“Metal ion catalyzed conversions of acrylonitrile, acrylamide, and ethyl acrylate by way of their Diels-Alder cycloadducts,” Nanjappan, P.; Czarnik, A.W. J. Am. Chem. Soc. 1987, 109, 1826.

“Ni(II)-promoted conversion of acrylamide to ethyl acrylate using the Diels-Alder reaction,” Czarnik, A.W. Tetrahedron Lett. 1984, 4875.

Enzyme Models for Glycosyl Transfer

“Synthesis and hydrolysis kinetics of p-trimethylammonium-β-D-ribofuranoside,” Vance, D.A.; Czarnik, A.W. J. Org. Chem. 1993, 58, 2343.

“Intramolecular carboxylate catalysis in the depurination of a 7-methylguanosine derivative,” Van Arman, S.A.; Czarnik, A.W. Bioorg. Med. Chem. 1993, 1, 369.

“Structure of a model compound for the lysozyme-substrate complex,” Cherian, X.M.; Gallucci, J.; Reid, S.S.; Czarnik, A.W. Acta Crystallographica 1990, C46, 756.

“Models for nucleoside glycosylase enzymes. Evidence that the hydrolysis of β-D-ribofuranosides requires a ‘backside’ preassociation nucleophile,” Cherian, X.M.; Van Arman, S.A.; Czarnik, A.W. J. Am. Chem. Soc. 1990, 112, 4490.

“Experimental support for Asp-52’s importance in lysozyme using a carbohydrate-based enzyme model. Acetal hydrolysis catalyzed by a ‘stereoelectronically-correct’ carboxylate group,” Cherian, X.M.; Van Arman, S.A.; Czarnik, A.W. J. Am. Chem. Soc. 1988, 110, 6566.

“On the function of ionized carboxylate residues at the active sites of glycosyl transferase enzymes,” Bakthavachalam, V.; Czarnik, A.W. Tetrahedron Lett. 1987, 28, 2925.

“The effects of cyclonucleoside formation on the rates of glycosidic hydrolyses in purine ribonucleosides,” Lin, L.-G.; Bakthavachalam, V.; Cherian, X.M.; Czarnik, A.W. J. Org. Chem. 1987, 52, 3113.

“Synthesis, stereochemistry, intramolecular cyclization, and rates of hydrolysis of adenosine 2′,3′-acetals,” Bakthavachalam, V.; Lin, L.-G.; Cherian, X.M.; Czarnik, A.W. Carbohyd. Res. 1987, 170, 124.

Nucleoside and α-Amino Acid Transport Agents

“Ribonucleoside membrane transport by a new class of synthetic carrier,” Mohler, L.K.; Czarnik, A.W. J. Am. Chem. Soc. 1993, 114, 2998.

“α-Amino acid chelative complexation by an arylboronic acid,” Mohler, L.K.; Czarnik, A.W. J. Am. Chem. Soc. 1993, 114, 7037.

“Selective transport of ribonucleosides through a liquid membrane,” Grotjohn, B.F.; Czarnik, A.W. Tetrahedron Lett. 1989, 30, 2325.

The Chemistry of Hexaazatriphenylene

“Hexaazatriphenylenehexacarboxamide solvate exhibiting π-complexation in the solid state,” Beeson, J.C.; Czarnik, A.W.; Fitzgerald, L.J.; Gerkin, R.E. Acta Cryst. 1996, C52, 724.

“Preparatively useful oxidation reactions of hexamethylhexaazatriphenylene,” Aumiller, W.D.; Dalton, C.R.; Czarnik, A.W. J. Org. Chem. 1995, 60, 728.

“Improved synthesis of 1,4,5,8,9,12-hexaazatriphenylene hexacarboxylic acid,” Rademacher, R.T.; Kanakarajan, K.; Czarnik, A.W. Synthesis 1994, 378.

“π-Complexation in the solid state induced by intermolecular hydrogen-bonding,” Beeson, J.C.; Fitzgerald, L.J.; Galluci, J.C.; Gerkin, R.E.; Rademacher, J.T.; Czarnik, A.W. J. Am. Chem. Soc. 1994, 116, 4621.

“Aqueous solubilization of a xynthetic charge-transfer receptor via cycloamylose inclusion,” Rademacher, J.T.; Czarnik, A.W. J. Am. Chem. Soc. 1993, 114, 3018.

“Synthesis and thermogravimetric analyses of trisimides and polyimides derived from hexaazatriphenylene,” Kanakarajan, K.; Czarnik, A.W. Polymer Communications 1989, 30, 171.

U.S. Patent 4,780,536 (October 25, 1988); “Hexaazatriphenylene hexanitrile and its derivatives and their preparations;” Inventors: A.W. Czarnik, K. Kanakarajan.

“Decarboxylative synthesis of hexaazatriphenylene,” Sarma, M.S.P.; Czarnik, A.W. Synthesis 1988, 72.

“Materials derived from the hydrogen-free heterocycle hexaazatriphenylene hexacarbonitrile. Syntheses and high temperature properties of polyimides,” Kanakarajan, K.; Czarnik, A.W. Society of Advanced Materials and Process Engineering Series 1988, 33, 956.

“A highly crosslinked, thermally stable polyimide film derived from hexaazatriphenylene,” Kanakarajan, K.; Czarnik, A.W. Polymer Preprints 1988, 29(1), 246.

“Syntheses of some hexacarboxylic acid derivatives of hexaazatriphenylene,” Kanakarajan, K.; Czarnik, A.W. J. Heterocyclic Chem. 1988, 25, 1869.

“Synthesis and some reactions of hexaazatriphenylene hexanitrile, a hydrogen-free polyfunctional heterocycle with D3h symmetry,” Kanakarajan, K.; Czarnik, A.W. J. Org. Chem. 1986, 51, 5241.

Structural Effects on the Rate of the Retro Diels-Alder Reaction

“[4+2] cycloadditions: Retrograde Diels-Alder reactions,” Sweger, R.W.; Czarnik, A.W. In Comprehensive Organic Synthesis, B.M. Trost; I. Fleming, eds.; Pergamon Press: Oxford, 1991, Volume 5, pp 551-592.

“Structural effects controlling the rate of the retro-Diels-Alder reaction in anthracene cycloadducts,” Chung, Y.-S.; Duerr, B.; McKelvey, T.; Nanjappan, P.; Czarnik, A.W. J. Org. Chem. 1989, 54, 1018.

“Diene substituent effects on the rate of the retro Diels-Alder reaction. Cycloreversion reactivity varying over a range of five powers of ten,” Chung, Y.-S.; Duerr, B.; Nanjappan, P.; Czarnik, A.W. J. Org. Chem. 1988, 53, 1334.

“Syntheses of 9,10-disubstituted anthracenes derived from 9,10-dilithioanthracene,” Duerr, B.F.; Chung, Y.-S.; Czarnik, A.W. J. Org. Chem. 1988, 53, 2120.

“Reversal of electronic substituent effects in the retro Diels-Alder reaction: A charge neutral analog of oxyanion-accelerated cycloreversion,” Nanjappan, P.; Czarnik, A.W. J. Org. Chem. 1986, 51, 2851.

Miscellaneous

“A general method for the syntheses of cyclodextrinyl aldehydes and carboxylic acids,” Yoon, J.Y.; Hong, S.Y.; Martin, K.A.; Czarnik, A.W. J. Org. Chem. 1995, 60, 2792.

“Facile preparation of the β-cyclodextrinyl aldehyde,” Martin, K.A.; Czarnik, A.W. Tetrahedron Lett. 1994, 6781.

“Rapid intermolecular electron transfer specific to the zwitterionic form of N-(9-(10-hydroxyanthryl))piperidine (HAP),” Sweger, R.W.; Czarnik, A.W. J. Am. Chem. Soc. 1991, 113, 1523.

“Catalysis and selectivity in reactions mediated by cyclodextrins,”>Akkaya, E.A.; Czarnik, A.W. In Catalysis in Novel Media II; Catalytica: Mountain View, CA, 1990.

“Intramolecularity: Proximity and strain,” Czarnik, A.W. In Molecular Structure and Energetics, Vol. 9: Principles of Enzyme Activity, J.F. Liebman and A. Greenberg, eds.; VCH Publishers: New York, NY, 1988, pp 75-117.

“Nitrosations in anhydrous trifluoroacetic acid media: A modification for insoluble or deactivated amine and amide precursors,” Kanakarajan, K.; Haider, K.; Czarnik, A.W. Synthesis 1988, 566.

“Cyclodextrin-mediated chiral sulfoxidations,” Czarnik, A.W. J. Org. Chem. 1984, 49, 924.

Other Publications

“Mimics of transaminase enzymes,” Breslow, R.; Czarnik, A.W.; Lauer, M.; Winkler, J.; Zimmerman, S. J. Am. Chem. Soc. 1986, 108, 1969.

“An assay to determine the kinetics of RNA cleavage,” Corcoran, R.; LaBelle, M.; Czarnik, A.W.; Breslow, R. Analytical Biochemistry 1985, 144, 563.

“Mimics of tryptophan synthetase and of biochemical dehydroalanine formation,” Weimer, W.; Winkler, J.; Zimmerman, S.C.; Czarnik, A.W.; Breslow, R. J. Am. Chem. Soc. 1985, 107, 4093.

“Hexadeoxy-β-cyclodextrinyl pyridoxamine, an artificial transaminase with a ‘deeper’ binding site,” Czarnik, A.W.; Breslow, R. Carbohyd. Res. 1984, 128, 133.

“Transaminations by pyridoxamine selectively attached at C-3 in β-cyclodextrin,” Breslow, R.; Czarnik, A.W. J. Am. Chem. Soc. 1983, 105, 1390.

“Intramolecular general base-acid catalysis in transaminations catalyzed by pyridoxamine enzyme analogs,” Zimmerman, S.C.; Czarnik, A.W.; Breslow, R. J. Am. Chem. Soc. 1983, 105, 1694.

“Foreshortened nucleotide analogues as potential base-pairing complements for lin-benzoadenosine,” Czarnik, A.W.; Leonard, N.J. J. Am. Chem. Soc. 1982, 104, 2624.

“Confirmation of the structure of the guanine-methylmalondialdehyde reaction product by unequivocal synthesis,” Czarnik, A.W.; Leonard, N.J. J. Org. Chem. 1981, 46, 815.

“Unequivocal assignment of the skeletal structure of the guanine-glyoxal adduct,” Czarnik, A.W.; Leonard, N.J. J. Org. Chem. 1980, 45, 3514.

Books

Integrated Drug Discovery Technologies. Mei, H.-Y.; Czarnik, A.W., Editors; Marcel Dekker: New York, NY, 2002. [ISBN: 0-8247-0649-8]

Optimization of Solid-Phase Combinatorial Synthesis. Yan, B.; Czarnik, A.W., Editors; Wiley: New York, NY, 2002. [ISBN: 0-8247-0654-4]

Solid-Phase Organic Syntheses. Volume 1. Czarnik, A.W., Editor; Wiley: New York, NY, 2001. [ISBN: 0-471-31484-6]

A Practical Guide to Combinatorial Chemistry. DeWitt, S.H.; Czarnik, A.W., Editors; ACS Books: Washington, DC, 1997. [ISBN: 0-8412-3485-X]

Combinatorial Chemistry: Synthesis and Application. Wilson, S.H.; Czarnik, A.W., Editors; Wiley & Sons: New York, NY, 1997. [ISBN: 0-471-12687-X]

Chemosensors of Ion and Molecular Recognition. Desvergne, J.-P.; Czarnik, A.W., Editors; NATO ASI Series, Series C: Vol. 492, Kluwer Academic Press: Dordrecht, 1997. [ISBN: 0-7923-4555-X]

Fluorescent Chemosensors for Ion and Molecule Recognition. Czarnik, A.W., Editor; Vol. 538, ACS Books: Washington, DC, 1993. [ISBN: 0-8412-2728-4]